
rUNSWift Team Report 2019

Jayen Ashar 1 Kenji Brameld 1 Ethan R. Jones 1 Tripta Kaur 1 Liangde Li 1 Wentao Lu 1 Maurice Pagnucco 1

Claude Sammut 1 Qingbin Sheh 1 Peter Schmidt 1 Thomas Wells 1 Addo Wondo 1 Kelvin Yang 1

Abstract

RoboCup continues to inspire and motivate our re-
search in artificial intelligence and robotics. The
2019 UNSW Sydney team (rUNSWift) consists
of undergraduate students, Masters and PhD stu-
dents, alumni, and supervisors. rUNSWift has a
rich history, with involvement in RoboCup for
over a decade in the Standard Platform League
(SPL). We work in research areas that include
computer vision, localisation, locomotion, ma-
chine learning, and layered hybrid architectures.
Major developments in 2019 include an overhaul
of the state estimation component of localisation,
farther refinements to the vision system, and a
range of improvements to behaviour and motion.

1. Introduction
Team rUNSWift, has been competing in the Standard Plat-
form League (SPL) since 1999. Every year, we strive to
improve the weakest aspects of our system and adapt it to
new challenges presented by the committee through rule
changes. In 2019, we focused on improving our localisation
and behaviours, which we had identified as our primary
weaknesses in 2018. With the improvements made over this
year we were able to achieve 3rd place in the 2019 Robocup
SPL.

2. Team Organisation and Development
Methodologies

Consistent team organisation and procedures continue to
play an important role in allowing us to improve our perfor-
mance significantly each year.

The team maintained regular weekly meetings and testing
routines that have been used in past years. We would meet
once a week in person, with Google Hangouts for remote
communication. At these meetings we would discuss team

1School of Computer Science and Engineering, The University
of New South Wales, Sydney, New South Wales, 2052.

Copyright 2020 by the author(s).

updates and technical direction for the next week. It also
allowed team members to ask for assistance on difficulties
they had experienced, fostering a culture of collaboration
and support for other team members.

Our main form of communication is through Slack, a team-
messaging platform, which allows messages to be sent out to
specific members through the use of channels. This encour-
aged clean, organised team communication, allowing team
members to only listen in to conversations of significance
to them. Additionally our team maintains the code base in
a git repository hosted on GitHub which enables effective
collaboration with a large code base. We also utilise the
GitHub wiki for internal documentation and GitHub issues
to track ideas, issues and their completion.

We also maintained regular testing schedules. The simplest
of these is a ‘striker test’, where a single robot and the ball
are placed in set positions around the field, and the effi-
ciency in scoring a goal is observed and compared against
previous tests. This tests the integration of all our modules
and improvements over the past week to ensure that changes
are actually improving our overall soccer play. We also ran
regular practice drills and matches involves multiple robots
to evaluate team play, positioning, contention and obstacle
avoidance.

3. Vision
The basic structure of the 2019 vision system remains the
same as that of 2017 and 2018 (Bai et al., 2017; Brameld
et al., 2018). The image is colour classified, (Section 3.1),
regions of interest are detected based on this classification
(Section 3.2) and finally regions of interest are classified
into objects by detectors (Sections 3.3, 3.4 and 3.5). This
layout is illustrated in Figure 1.

The key changes to our vision system in 2019 were:

• Ball Detection Classifier (Section 3.4).

• New Robot Detector (Section 3.5).

• Field Features Classifier (Section 3.5).

rUNSWift Team Report 2019

Figure 1. Overview of the 2018 vision system.

3.1. Adaptive Thresholding

In 2018 we converted the vision system to work with binary
images to be more robust to varied lighting. This is done
with adaptive thresholding, which is an effective method for
calculating the threshold dynamically in scenes with uneven
levels of brightness. This is a significant improvement on the
static colour calibrated tables used by the team in previous
years.

We utilise an efficient implementation of adaptive threshold-
ing using the integral image (Bradley and Roth, 2007) to
achieve real-time thresholding on the Nao. The algorithm
determines the average y value (in the YUV422 image) of
the pixels within a square window surrounding each pixel.
If the value of the centre pixel is sufficiently lower than the
average within the window it is set to black, otherwise it
is set to white. This process can be performed efficiently,
regardless of window size, with the integral image.

As this method does not rely on specialised colour tables
the exposure of the image may be allowed to vary. This has
allowed us to enable auto exposure on the camera, further
improving our system’s robustness to changes in lighting.
Target exposure was brought down to minimise motion blur.
Furthermore, manual colour classification of the environ-
ment before each game is no longer necessary, reducing the
setup time. The main downside is the loss of colour infor-
mation, previously used to determine the field boundary.

3.2. Regions of Interest

Currently, everything of interest on the RoboCup Soccer
SPL field is primarily white. In the 2017 vision system,

Figure 2. An example of the adaptive thresholding process. White
pixels are considered light whilst green pixels are dark.

regions of interest (ROIs) were created by finding white
areas in a colour calibrated image. Minimal changes was
required to move to the binarised image in 2018. These ROIs
are located using a connected component analysis algorithm
(Rosenfeld and Pfaltz, 1966), with some modifications.

Since we just need the bounds of the regions, only the
first pass of the algorithm is performed, recording the axis
aligned extents of each group of pixels. When this is done
connected groups can be quickly merged by taking the max-
imums of these bounds.

This algorithm tends to produce large groups containing
most of the objects in the frame due to field lines connecting
other white objects, such as the ball. As this is undesirable
for the purposes of locating important objects the we split
the scene into a grid, and prevents components from being
connected across grid lines. Unfortunately, this may split
useful objects like the ball so the system merges nearby
groups where the edged of the bounding box have a suf-
ficient ratio of white to not white pixels. This achieves
bounding boxes that are reasonably likely to contain inter-
esting objects, tightly bounded when those objects are not
close to other white objects.

rUNSWift Team Report 2019

Figure 3. The region finding system. From left to right: The binary
image. Regions generated without grid splitting. Regions gener-
ated with grid splitting, culled to show only ball like regions. Final
regions generated with grid splitting and merging, culled to show
only ball like regions.

3.3. Field Features

The field feature detector takes advantage of the ability of
the ROI system to locate line segments. All lines of the field
are white, such that they are detected and segmented by the
ROI system 3.2. Some computationally efficient checks are
performed on each region, allowing us to determine whether
it contains a field feature. This is more efficient than the
previous approach, which scanned the frame for candidate
points and ran RANSAC on these points to locate field
features. The detector is compatible with the binarisation of
vision as it considers the light pixels as white (for lines) and
dark pixels as green (for the field).

Our system detects regions that appear to contain line seg-
ments, corners, T-intersections and curved line segments.
Curved line segments are combined together to form cen-
tre circle candidates, which are further checked for a line
passing through the middle of the candidate circle to pro-
vide confirmation and orientation. If line segments intersect
near the detected corner and T-intersection features these
features can be confirmed, or even new, possibly occluded,
ones detected. These lines and more distinct field features

are passed to localisation to determine the position of the
robot. This system is outlined in figure 4.

Figure 4. Overview of the field feature detector.

3.3.1. REGION EXPANSION

There are times when a region does not contain a sufficient
portion of a feature to identify it and accurately distinguish
its direction. In such cases, we attempt to expand the re-
gion to obtain more information on the feature. For corners,
this ensures the feature is fully included in the region. For
curves, a larger curvature segment can be detected from the
region. We can’t expand a region arbitrarily, as in some situ-
ations, particularly near the goal box, features are located
close to each other and expanding arbitrarily would put sev-
eral features in a single region. We perform the expansion
by combining some neighbouring regions, whilst trying to
ensure that no other features have been included into the
region. This additional step is effective for increasing the
accuracy and consistency of detecting field features. The
following pseudocode describes how this region expansion
is performed:

3.3.2. LINE SEGMENTS

The line classification system primarily examines the bor-
ders of regions. If exactly two white segments are found
along the region boundary, they are assumed to be the ends
of a line (Figure 5). We then check that the width of the
two ends are approximately the correct size for a field line

rUNSWift Team Report 2019

For e v e r y r e g i o n
Count number o f w h i t e p i x e l segmen t s a l o n g t h e r e g i o n edge
Find a l l n e i g h b o u r i n g r e g i o n s
For each n e i g h b o u r i n g r e g i o n

C r e a t e r e g i o n c o n t a i n i n g t h e o r i g i n a l and n e i g h b o u r r e g i o n
Count number o f w h i t e edge s e c t i o n s i n t h i s r e g i o n
I f number o f w h i t e edge s e c t i o n s i n o r i g i n a l r e g i o n AND combined r e g i o n

i s t h e same
Rep lace t h e o r i g i n a l r e g i o n wi th t h e combined r e g i o n

based on an estimated projection from the robot’s pose. We
also check that the two ends are connected by following
the edge of the white area. If these checks pass the system
then attempts to determine if the segment is a straight line,
a curve or a corner.

Figure 5. An example of a region classified as a line. Green areas
are dark pixels, white areas are bright pixels. Blue pixels are dark
areas on the border and yellow pixels are bright areas on the border.
The orange pixel is the centre point between the line ends. Grey
pixels are the extents of the line identified by the curve check.

3.3.3. CURVE SEGMENTS

A region must be sufficiently large to be classified as a curve.
Very small regions are always marked as lines. To check if a
segment is a curve, the pixel half way between the two line
ends is checked. If that pixel is green, this is a curve. If the
pixel is white, the edges of the line around the centre point
are found. If these are unevenly spaced from the centre
point, the region is marked as a curve. If it is evenly spaced,
it is considered a line. This is shown in Figures 5 and 6. If
the segment passes these checks it is finally checked to see
if it is merely curved or is an actual corner.

Figure 6. Curve detection on a curve. Most colours are as in Figure
5. As the centre point is not in the line there are no grey pixels.
Pink pixels show the edges of the curve identified.

A region marked as curved must finally be checked to deter-
mine if it is actually a curved line or really a sharp corner.
To do this the point along the edge of the white part of the
line segment farthest from the line between the two ends is

found as tips, the middle point of two tips is the intersection
of this potential corner. If half of the edge points of white
part is one a straight line, the region is marked as a corner
(Figure 7). Otherwise it is left as a curve.

Figure 7. Examples of the corner check being performed on a curve
(above) and corner (below). Here the orange pixels represent the
“point” of the corner. The yellow lines represent the straight lines
identified as composing the corner. The pink dots represent the
best attempts to find the ends of those lines on the curve.

3.3.4. CORNER CLASSIFIER

A region is marked as a corner candidate after the previ-
ous checks, it will be sent to a final classifier. This corner
classifier is a specially designed semi-supervised module
composed of a Gaussian Mixture Model (GMM) (Nielsen,
2012) and a simple classifier.

Two GMMs have defined a set of Gaussian models of both
real corners and samples of non corner images that pass the
heuristic checks. These unsupervised, generative models
have data efficiency advantages (that is, they require fewer
examples to learn) over many other machine learning meth-
ods, such as convolutional neural networks (Krizhevsky,
Sutskever, and Hinton, 2012). When a new candidate is sent
to the GMM, it will output the probability of each Gaussian
in the model. Then, a simple Max A posterio algorithm
is applied to determine the most probable classification by

rUNSWift Team Report 2019

calculating the probability of each mixture and picking the
most probable as the final output.

3.3.5. CENTRE CIRCLE CONSTRUCTION

Where curved line segments have been identified further
checks are made to determine if the area can be confidently
said to contain a centre circle. The possible centre circles
corresponding to each curve segment are calculated. Line
segments that lie on the edge of those circles are then identi-
fied. Three checks are made:

1. The total length of curved line segments along the
circle edge must be above a threshold.

2. The total length of curved and straight line segments
along the circle edge must be above a (higher) thresh-
old.

3. There must be a sufficiently long merged line passing
through close to the centre of the centre circle (i.e. the
field centre line).

This is illustrated in Figure 8.

3.3.6. T JUNCTIONS

If there are exactly three white segments along the edge
of a ROI, it is potentially a T intersection. As before, the
white areas are checked to determine if they are roughly the
correct size and connected to each other. If they are, the
are further checked by ensuring the line between two of the
ends is entirely white pixels (the top of the “T”). Finally the
straight lines between these two ends and the other end (the
base of the “T”) must not be entirely white pixels. If all this
is passed, the image is sent through a GMM, in a similar
manner to the corner classifier (Section 3.3.4).

3.3.7. FEATURE EXTRAPOLATION

The final step performed by the system is to check that the
corners and T intersections it has identified match the lines
it has found. The system may also extrapolate corner and
T intersection locations it did not find in regions. For every
pair of (merged) lines the intersection point is identified. A
quality value is then calculated for that intersection. If a
corner or T intersection is detected nearby a large quality
boost is added. The attributes of the lines forming the inter-
section are then examined. Longer lines with ends closer to
the intersection add more quality. If one of the lines passes
through the intersection quality is added to it being a T in-
tersection, while corner quality is penalised (and vice versa).
The line based intersection checks are illustrated in Figure
9.

3.3.8. PENALTY SPOT

Due to improvements to the state estimation system the
goalie specific penalty spot detection used in 2018 was no
longer required. This system was not used in 2019.

3.4. Ball Detector

Ball detection is a critical component of any robot soccer
system. The 2016 transition to a black and white ball has
made the task significantly more difficult. The ball can no
longer be distinguished from other objects by its colour
alone, instead requiring a more complex system that consid-
ers a candidate’s appearance. This rendered the 2015 orange
ball detector entirely ineffective. The 2017 ball detector
adequately met this challenge primarily making use of the
circular shape of the ball and its distinctive pattern. De-
spite this, the 2017 ball detector had a number of limitations
and assumptions. The structure of the 2017 ball detector
remained in 2018, with improvements made to address its
limitations, increasing the reliability and accuracy. Finally,
the 2019 system improved recall by relaxing many of the
earlier checks in favour of making use of a new convolu-
tional neural network in the final step, replacing the 2018
Gaussian mixture model.

Inside the ball detector, all regions are passed initially fil-
tered through a ball candidate finder. The ROI finder at the
vision level, described in 3.2 segments the white sections of
the frame, however, these regions are not always a perfect
crop of the ball. Namely, field lines, other robots and goal
posts can be included in an ROI that also includes a ball. A
tightly cropped and consistently scaled region of interest is
desirable as it significantly simplifies the problem of ball
pattern detection. Achieving a tight crop is the role of the
ball candidate finder.

For “easy” cases cropping is done by Naive ROI (Section
3.4.1), while more complex regions require Blob ROI (Sec-
tion 3.4.1). We also eliminate regions that are clearly not
ball like due to size and shape. Scaling is performed in the
region regeneration step (Section 3.4.2).

Next, region specific pre-processing (Section 3.4.2) is per-
formed to adjust the image and make the major features of
the ball candidate more salient. The white pixels are used
to perform a circle fit, and we discard regions for which an
adequate circle cannot be found (Section 3.4.2).

A ball candidate that reaches this stage undergoes two final
heuristic checks to analyse the likelihood that it is a ball
(Sections 3.4.3 and 3.4.3). Each of these checks give the can-
didate a score if passed. To be considered a ball a candidate
must achieve a score above a certain score threshold.

3.4.1. BALL CANDIDATE GENERATION

rUNSWift Team Report 2019

Figure 8. Basic process of constructing a centre circle. Left: The detected lines overlaid on the true centre circle, with green for curves
and red for lines. Middle: All possible centre circles based on the curved lines. Right: One circle selected, with all the lines related to it in
green.

Figure 9. An example of the quality modifiers used by the intersec-
tion detector. Lines are shown in red and the intersection point is
shown as a blue circle.

Naive ROI If a region is the correct size and shape for
a ball, it is adjusted and considered as a candidate. The
definition of correct size is calculated from the kinematics
chain, given the ROI’s position in the frame. The basic
adjustments includes adding a small padding to the region
in case the side or corner of the ball is lost and resizing the
ROI to a fixed size. This is the most frequently occurring
case in the game, where the ball is in the middle of the field
with no obstructions.

Blob ROI When an ROI is larger than the expected size
of a ball, there is a possibility of the ball being inside the
region, but overlapping with other white objects. In this
case, an attempt is made to create a tight region around the
ball, by looking for the black blobs on the ball. A connected

component analysis is run on the binarised region to locate
all black blobs within the region. If multiple ball blobs
are detected, they are compared to find the blob with the
highest possibility of being from a ball. This is achieved
by comparing the density of black within the bounding box
around the blob. The density is determined by dividing the
number of black pixels in the blob by the product of the
width and height of the rectangular bounding box around
the blob. The blob with the highest density is considerd
the most likely to be a blob from the ball in the region. If
the blob’s width to height ratio is close to 1:1, a new ball
candidate region is created around it. This region is then
passed through the remainder of the detection pipeline as
though it was a naive ROI. This helps us locate the ball
when it is adjacent or overlapping with other white objects,
such as when the ball is in front of a goal post or robot or
on a line.

3.4.2. PREPROCESSING

ROI Specific Thresholding To sharpen the ball pattern, a
second pass of the adaptive thresholding is run, local to the
region. This is similar to the one described in Section 3.1, al-
though the brightness parameter is determined dynamically
for each region, based on its content. Specifically, if the
region is in the top camera, the threshold percentage is one
tenth of the average brightness of that ball candidate. For
regions in the bottom camera, a single pre specified value is
used, because there will be less variance in a single frame.

Circle Fit The ball candidate is refined further by using a
circle fit. Candidate edge points are generated by scanning
from the left, top, and right of the region to find the first tran-
sition from black to white in the binary image. A scan from
the bottom is not conducted, as the shadow of the ball makes
often makes its bottom edge difficult to identify. A circle
fitting algorithm is then used to determine the existence of
a circle, along with its centre and radius. The following
describes the algorithm used for circle fitting, for a single
region.

rUNSWift Team Report 2019

C r e a t e 2D a r r a y , s i z e o f t h e r e g i o n f o r c e n t r e p o i n t v o t i n g
C r e a t e 1D a r r a y f o r r a d i u s v o t i n g
Find edge p o i n t s by s c a n n i n g r e g i o n from t h e top , l e f t and r i g h t o f t h e r e g i o n
For 100 i t e r a t i o n s

Randomly s e l e c t t h r e e p o i n t s
De te rmine c e n t r e p o i n t and r a d i u s from p o i n t s
Vote on c e n t r e p o i n t
Vote on r a d i u s
IF max (c e n t r e p o i n t v o t i n g 2D a r r a y) > c e n t r e p o i n t v o t i n g t h r e s h o l d

AND max (r a d i u s v o t i n g a r r a y) > r a d i u s v o t i n g t h r e s h o l d
Found c i r c l e , w i th most−v o t e d c e n t r e p o i n t and most−v o t e d r a d i u s

Region Regeneration If a region has passed all the pre-
ceding checks it is considered a strong enough candidate
to process further. The first step of this is ’zooming in’ on
the candidate region. If the region contains too few pixels
when considered at the standard resolution of binary clas-
sification the classification is redone at higher resolution.
The resolution is increased by the smallest factor of 2 that
causes the region to contain the minimum number of pixels,
or the maximum resolution of the Nao camera if needed. As
a result, we are able to extend the range of the ball detection
considerably, without having to process a high resolution
image upfront in the stages of ROI generation 3.2.

3.4.3. HEURISTIC CHECKS

Triangle Check The regular shape of the pattern on the
ball can be used to eliminate many non ball cases. To
achieve this we check that the dark spots on the ball form
a rough equilateral triangle. To detect these dark spots
adaptive thresholding and connected component analysis
is run specifically for the region. The parameters of these
algorithms are, for this case, optimised to cleanly distinguish
the black spots on the ball. Additionally, the circle fit is
treated as a hard edge, preventing spots on the edge of the
ball from being connected via the dark field. The black blobs
found this way are checked to ensure they are of appropriate
size and aspect ratio to be a ball spot, relative to the size of
the circle.

The blobs that have passed these tests are then checked to
determine if their centre points form an imperfect equilateral
triangle. Each possible triangle is checked. As the triangle
should be (roughly) equilateral this check can be easily
performed by comparing the distances between each centre
point. If all three distances are nearly the same they form a
sufficiently equilateral triangle.

Machine Learning Classifier A major change this year
is the replacement of the classifier for top camera ball de-
tection. The class conditional Gaussian mixture Model
(ccGMM) was replaced with a Convolutional Neural Net-

work (CNN). The bottom camera still uses the ccGMM
which was introduced in 2018(Brameld et al., 2018). Addi-
tionally a CNN has been used to improve our robot detection
system.

Similar network structure is shared both by the ball and
robot detector.

Table 1. Network Structure
Layer Name Output Size Activation
0 Input 32*32*1 Linear
1 Conv 30*30*4 Relu
2 Max pool 15*15*4 Linear
3 Conv 12*12*8 Relu
4 Max pool 6*6*8 Linear
5 Flatten 288*1 Linear
6 FC1 8*1 Relu
7 FC2 2*1 Linear

Table 2 shows the network design for the ball detector. We
split the training and inference into two separate parts. The
network is trained using a Python3 program with Tensor-
flow(Abadi et al., 2015). The trained model’s weights are
saved in text format. These weight files are loaded when
the robot starts. Inference on the robot is performed by a
C++ program using tiny-dnn. Tiny-dnn is a header only
dependency-free deep learning framework for C++14.

These two machine learning models have together improved
our ability to recognise the ball. The bottom camera problem
is simpler as the ball is usually more clearly visible, such
that the cheaper ccGMM is sufficient. The more complex
conditions in the top camera, such as additional potential
false positives, varied lighting across the frame and the top
half of the ball being brighter than the bottom half, bene-
fit from the more expensive but reliable CNN. In practice
detection range has been significantly increased without
introducing additional false positives.

rUNSWift Team Report 2019

3.5. Robot Detector

As discussed in 2018’s report, we use a series of heuristic
checks along with a DBSCAN clustering to propose the
robot regions(Brameld et al., 2018). This year we replace
the random forest classifier with a Convolutional Neural
Network (CNN). The main drawback of the previous ran-
dom forest method is that it’s performance largely depends
on feature engineering, which is extremely challenging to
develop. CNN do not require any feature selection, allowing
the new model to achieve better generalisation. The design
and training strategy is similar to the ball detector CNN
which has been discussed in detail (Section 3.4.3).

4. State Estimation
One issue that arises in the SPL environment is the non-
linearity between measurements from the robot’s observa-
tion and the cartesian kalman filter. This issue is overcome
by first converting the measurements from polar coordinates
to cartesian coordinates before using it in the kalman filter.
This method is used for both robot pose estimation and ball
position and velocity estimation.

4.1. Robot Pose Estimation

Another issue that arises in the SPL environment is the am-
biguity of field features (3.3) as there are multiple visually
identical features that exist on different parts of the field (eg
corners). To handle this, multiple modes (or hypotheses) are
maintained and the possible robot position is calculated for
each feature. The position that is most consistent with the
robot’s current pose estimate is used.

Each mode has a state vector (x, y, theta), covariance matrix
and a weight. The mode with the highest weight is the
current position estimate of the robot. The inputs used for
the robot pose estimation are the odometry information from
the robot and the distance, heading and orientation of all
field features observed. The odometry is calculated from
the motion of the robot’s feet and the gyroscope reading.
In the predict step, the odometry information is used to
update the robot pose estimate for each mode. In the update
step, the measurement coordinates (distance, heading and
orientation) of field feature observations are converted to
a set of possible robot poses in cartesian coordinates (x, y,
theta). A linear kalman filter update is then applied to it.
The weight of the mode is then scaled based on how well
the current observation matches that particular mode. All
modes are updated this way and finally the weights across
modes are scaled, low weight modes deleted and similar
modes merged.

4.2. Ball Position and Velocity Estimation

A converted measurement kalman filter is also used for the
ball. A prediction of the ball’s position and velocity is first
made based on the change in time and the robot’s odometry
measurements. When a ball is observed by the robot, the
position estimate is updated by first converting the non-
linear polar measurements to cartesian coordinates and a
linear update is then performed.

5. Motion
rUNSWift’s motion is primarily based off the Hengst’s walk
generator (Hengst, 2014) developed in house and used since
the 2014 RoboCup competition. Today, it is still robust
choice for many teams and we have continued to improve it
through several modifications. The kick motion, integrated
directly into the walk generator for smooth transitions, was
also developed around the same time. In 2018 competition
improvements were made to both of these motions to im-
prove the robots stability and recovery from disturbances.
The motion of the kick was also modified to improve its
dynamic reach, allowing the robot to powerfully strike balls
in a larger area in front of the kicking foot.

In 2017 artificial grass fields were introduced, a surface that
made balance recovery from disturbances more difficult.
Additionally, the rough field surfaces at the 2017 RoboCup
Nagoya competition farther complicated stable movement.
These uneven surfaces introduce unexpected disturbances,
causing instability. These factors, combined with an ageing
and worn team of robots, influenced the decision to improve
the stability of rUNSWift’s walk generator. When a large
destabilisation of the robot is detected by the gyro the robot
will now react by moving its hip to compensate. As field
construction proved similarly challenging in 2018 this devel-
opment was tested in practice and proved itself a significant
improvement to walk stability.

6. Behaviours
6.1. New Behaviour Structure

In 2018, we modified our behaviour architecture to improve
dynamic role switching. From 2010, the higher level layers
of rUNSWift’s behaviours have been written in Python, al-
lowing faster development. Our behaviours are modelled off
a decision tree. Nodes are divided into two categories, roles
and skills. Roles, such as “Goalie” and “Penalty Striker”,
define what the robot should be doing during a game. Skills
are specific actions a robot has chosen to take.

Skills range from relatively high level actions, such as ap-
proaching the ball or walking to a global point on the field,
to lower level actions, such as stand or crouch. This allows
the low level skills to be inherited as components of several

rUNSWift Team Report 2019

higher level skills, which in turn are used by one or more
roles.

State transitions can happen a frequently when a robot is
involved in ball play. Under the old system, when transi-
tions take place in high level skills, all child skills must be
reinitialised. This process creates a computational overhead
that reduced robot responsiveness, particularly during crit-
ical periods of play around the ball. To mitigate this we
redesigned our system so that all objects are initialised at
the start, and a reset routine is called on only the nodes of
interest when a transition takes place.

7. Tooling
While they have no direct effect on gameplay, tools are
critical to developing effective solutions to the problems
found in robot soccer. Here the two primary tools used by
rUNSWift are outlined.

7.1. Offnao

Offnao is a tool built in house that collects, saves, restores
and streams data from Nao robots. It can record all the
data from the robot’s sensors, including either the colour
classified or raw camera data. If given the raw camera data
Offnao can also run the vision system offline. Offnao also
collects information about the internal state of the robot,
such as its beliefs about its position, team mate position
and ball position, along with what the vision system has
detected.

All this information can be displayed through various visual-
isation methods, including annotated versions of the robot’s
camera image and an overhead field view (Figure 10. Cam-
era settings may also be changed through Offnao. Camera
pose offsets can be calibrated to compensate for differences
in the head mounting and looseness in the robot’s joints. De-
bug logs recorded by the main code may be viewed. Finally,
raw data from the non vision sensors, such as sonar and foot
sensors, can be accessed.

This tool is also used to calibrate the camera pose and cam-
era settings, by streaming live data from a robot that is
running the code. We can tune these parameters in real time,
before saving them to a config file for the robot to use.

7.1.1. PROTOCOL

Protocol buffers are Google’s language-neutral mechanism
for [de]serializing structured data - think JSON, but binary.
We define how we want our data to be structured once (like
a JSON schema), then we use the generated source code to
write and read our structured data to and from the network
and disk.

Because it is JSON-like, it is backward and forward com-

patible across different versions and branches of our tools.
Version 2.8 of Softbank’s NAOqi OS and cross toolchain in-
clude protocol buffers version 2.6.1, and we have compiled
protocol buffers for Aldebaran’s NAOqi OS 2.1.

The generated C++ API for protocol buffers attempts to
consume an entire stream during deserialization. For this
reason, our protocol includes a 32-bit little-endian integer
before each protocol buffer “Blackboard” object indicating
the size of the object, for deserialization over the network
and in .bbd2 (BlackBoard Dump v2) files. .ofn2 (OFfNao
v2) files contain exactly one “NaoData” object.

7.2. Vatnao

As part of our 2016-17 Vision System changes we developed
a tool to assist in development and debugging. The tool,
Vatnao, runs the vision system on a local machine using logs
recorded on the robot. It allows the developer to examine
variables, annotate images based on how Vision processes
the raw frames, and even adjust configuration in real time.
We used it heavily as part of development of the ball detector
to speed up the development cycle, reducing testing time,
quickly identifying problem cases and allowing us to quickly
evaluate the effects of tweaks and changes to our code base.

Vatnao has also allowed us to break down the components of
each detector. For example, in the case of the ball detector,
each heuristic can be broken down and displayed separately
to determine optimal values for the checks. The tool also
handles other modules of vision, such as field feature and
robot detection. In 2018, we have continued to develop and
use Vatnao to improve vision as we port more of the vision
system to use regions of interest 3.2.

8. Whistle Challenge
The whistle challenge was a research exercise designed to
develop different approaches to sound localisation. This
is a technique used to identify where a particular sound
emanated from in terms of some positioning metric, such as
cartesian coordinates. By knowing how far the sound was
relative to a position and if it existed within a predefined
boundary, various applications can be realised. A typical
example that is often brought up is knowing whether or
not a whistle was blown within the current playing field or
another alongside it. Obviously the competitors want their
robots to react to a whistle inside their field, but they also
want them to ignore those on other fields, since randomly
stopping during a game is rather inefficient.

Each competitor was able to use between one and five NAO
humanoid robots during the challenge, with the competitor
who used the least being favoured in a tie-break scenario. A
standard 9m x 6m soccer field was used for the challenge
wherein the selected NAO robots were placed in predefined

rUNSWift Team Report 2019

Figure 10. The primary Offnao display. The yellow dot is the current ball position belief. The little pac-man figure is the robot’s position
belief. Blue boxes are detected regions. The black circle is a detected ball.

positions and angles. If a competitor chose less than five
robots, then they could also select which positions they pre-
ferred. There were no requirements pertaining to NAO hard-
ware or software version, meaning that NAO robots from
prior generations, such as the V3 or V4 variants, were per-
mitted. Hardware modifications or additions were banned as
to ensure a level playing field and promote the main purpose
of the challenge.

The field specifications, robot positions and robot angles
were defined two days before the challenge began to allow
teams to properly incorporate them. Figure 11 provides
an illustration of the field with these positions and angles
included to allow a better understanding of such a setup.

Each robot had to be in a penalised state before being placed
on the field where a penalised state meant that the robots
were not performing any related processing. Once the robots
were placed, their chest button was pressed exactly once
and the whistle challenge code was executed. Each robot
was not allowed to move during the challenge, they had to
remain completely stationary with the exception of the head,
likely because this housed the directional microphones.

After positioning, a person involved with running the chal-
lenge would navigate to eight different positions and blow a
whistle. These positions were situated both in and outside
of the playing field with no obvious correlation. The robots
need to hear this whistle, generate a corresponding cartesian

Figure 11. Whistle challenge field example

position estimate for it and determine whether or not it was
blown from inside the field or outside of it.

Each whistle attempt (3 points) was scored based on three
different criteria as follows:

• Field location (1 point)

• Angular precision (1 point)

• Distance precision (1 point)

Field location depends on whether the robots correctly de-

rUNSWift Team Report 2019

termined if the whistle was blown inside or outside the field.
Angular precision was awarded based on how large the an-
gle between the actual position and the estimated position
from the robot was. If it was below five degrees then the
full point was awarded. Otherwise the amount awarded was
based on a linear scale from 5 to 30 degrees, where anything
past 30 degrees was not considered. Distance precision was
awarded based on how similar the distance between the
robot and its estimated position was in comparison to the
robot and the actual whistle position. If the difference was
within ±5%, then the full point was awarded. Otherwise the
amount awarded was based on a linear scale from 5 to 30%
deviation, where anything past 30% was not considered. For
example, a deviation of 15% would result in a score of 0.6.

The scores from each whistle attempt were added together
to create a final score out of 24. The team with the highest
score, or the least number of robots in a tie scenario, were
ranked as the winner.

8.1. Hardware Selection

The only permitted hardware were the Nao humanoid robots
from Softbank. No custom modifications could be made
to the hardware. This meant that there were exactly six
permissible robots models that could be selected for this
challenge, ranging from the initial introductory V1 Nao all
the way to the current V6 model.

The robotic hardware, such the gears and joints, remained
largely the same across these models. The majority of
changes between versions were focused on internal compo-
nents including the CPU, storage, camera and microphone.
The main hardware required for this challenge, since the
robots were required to remain stationary, was the CPU for
audio processing and the microphone quality. A faster CPU
meant more accurate algorithms whilst better microphone
quality allowed differing sounds to be separated more easily.

The microphone quality has remained basically the same
since the V4 iteration, whilst the CPU performance has only
increased. Logically this would mean that the latest version,
the V6, would be the optimal choice. And this would be true,
assuming Softbank had not decided to radically change the
microphone placement on their robots from and including
the V5 iteration.

Each NAO robot has a total of four microphones that are all
positioned on its head. In iterations before and including
the fourth, these microphones were positioned in such a
way as to increase the distance between each one and better
respond to sounds surrounding the robot in any direction.

This optimised sound localisation operations since it was
easier to distinguish when each individual microphone re-
ceived the same sound. Unfortunately, the same could not be
said for sound recognition since most target sound emanates

from the front of the robot through people trying to interface
with it. This meant that only one microphone received the
sound clearly whilst the others did not. As recognition is
typically used more than localisation, the microphone po-
sitioning was changed to prioritise this for models past the
V4.

In terms of a visual comparison, Figure 12 details the current
microphone positions for the V5 and later models whilst
Figure 13 details the microphone positions for the V4 and
prior models.

Figure 12. V5 and later Nao robot microphone positions

Figure 13. V4 and prior Nao robot microphone positions

We hypothesise that utilising the V4 models for sound lo-
calisation would have been more accurate, assuming that
any unofficial changes made in microphone quality between
the upgrades were not significant, as information regarding
their changes was not directly provided by the manufacturer.
Unfortunately, due to the majority of our V4 models being
quite old and inoperable, the team opted to use a set of
V5 models instead, promoting consistency amongst whistle
measurements.

rUNSWift Team Report 2019

8.2. Solution

The problem was split into two separate stages compris-
ing sound detection and positioning. Both problems were
independent such that as long as the output flowing from
detection to positioning remained the same, they could be
developed simultaneously.

8.2.1. DETECTION

This involved first recognising the whistle and then determin-
ing its angle and elevation relative to the robot in question.
The recognition process had mostly been completed through
the regular whistle detection algorithm already used during
the soccer games. Two slight modifications were required
to allow it to be used more readily however.

The first was allowing it to be operated synchronously so
that it may be called and return only when a whistle is
heard. Typically it would run asynchronously since whistle
occurrences during a soccer game are basically random, but
in the whistle challenge they are entirely predictable.

The second modification was to the length of the recorded
whistle segment. The current algorithm outputs the entire
whistle with around half a second of padding towards the
front such that the whistle itself started late and ended early.
Since the timing of the whistle was more important that the
actual sound itself, this initial padding was removed. The
time when the whistle began was then returned.

ALSoundLocalisation Controllability Softbank in-
cludes an ALSoundLocalisation module as part of their
API for controlling the NAO robots. This module can
theoretically detect a sound based on a predefined sensitivity
value (0.0 1.0) and return the estimated angle, elevation
and confidence relative to the robot that heard it. It is
worth noting that this estimate was far from accurate.
The specifications state that the accuracy should have a
theoretical maximum of 10 degrees provided that the sound
is heard within 120 degrees from the front of the robot.
Even when tested in an enclosed, controlled environment,
the results were erratic at best with the elevation value being
essentially useless. There were times when the whistle was
blown from the front and the robot declared with nearly
complete certainty that it was heard from the back. Ideally
if time allowed, the use of this module would be avoided
and a custom solution, perhaps treating each robot as an
individual microphone itself, would have been used.

The ALSoundLocalisation module can only function asyn-
chronously such that the user must declare a callback func-
tion that the module itself will call every time it thinks it
has perceived a sound. This means that there is no way to
determinatively prove that the sound returned by the call-
back mechanism was actually the whistle. This was a great

annoyance during development. The team developed two
alternative methods of substituting this determinative func-
tionality.

The first method involved hearing and recording the entire
length of the whistle across all four microphones. Once
recorded, the microphones on the NAO robot was disabled
and the audio was passed directly to the audio module in
the form of a WAV file (no other method was available).
The idea behind this was that the ALSoundLocalisation
module could perceive the whistle sound as it was passed to
the audio module such that it would hear only the whistle
exclusively without any background interference. Since
the localisation module only heard the whistle, it could be
assumed that the localisation callback would only work
based on said whistle. Unfortunately this did not work as
expected. The ALSoundLocalisation module only worked
when the audio file was passed to the audio module, which
lent itself to the belief that the localisation process was based
on the whistle. However, the actual localisation results
were not at all accurate nor representative of anything in
general. This was further proven by recording audio when
the microphones of the NAO robot were disabled. Instead
of getting some error or hearing essentially nothing, only
white noise was present. It was not silent and had clear,
albeit slight peaks and troughs in its transmission. These are
the sounds that were being localised. There was no proof,
either technically or through the results, that it was actually
hearing the whistle at all.

The second method of determining what localised sound
was the whistle was based on the timestamp returned from
the whistle. Since the time was relative to the internal clock
of the robot, the time returned from our custom whistle de-
tection algorithm could be compared with the time returned
from the ALSoundLocalisation module. The sound with the
highest confidence that existed within a small time interval
epsilon at either side of the whistle timestamp was selected.
This is obviously not determinative as it is entirely possible
that the localisation module may lag behind and miss this
interval, but it was unfortunately the most efficient method
available at the time and was selected as a result.

In conclusion, the custom whistle detection algorithm was
used to discern the time when the whistle was heard which
was used to find the closest corresponding sound returned
by the ALSoundLocalisation module. The angle, elevation
and associated confidence of such a sound was returned
and passed to the second stage of the solution, which was
actually positioning the sound.

8.2.2. POSITIONING

This involved collecting the sound detection results from
every available robot and calculating the overall position
of the whistle based on them. Since the dimensions of

rUNSWift Team Report 2019

the field and the position of each robot was known, this
could be done entirely mathematically without needing any
vision elements. Two plausible and tested solutions were
proposed to achieve this, both of which have the same initial
processing but differ in the techniques used to generate their
final result.

They begin by first creating a unit vector for each robot
that points directly in front of them at a default angle of
0 degrees. This vector is then rotated based on the angle
between the robot and the whistle. Figure 14 illustrates an
example of the processing performed up until this point.

Figure 14. Unit vector rotation process

The resultant rotated unit vector (red) now points directly
to the whistle, assuming that the provided angle is correct.
This vector will be used throughout the following solution
explanations.

Vector Intersections The angle of the robot towards the
whistle changes depending on the location of the robot.
Therefore if at least two robots exist, the change in this
angle relative to their location can be used to locate the
whistle. The more robots present, the more times this can
be done, resulting in a higher overall accuracy.

For each unique pair of robots, an intersection point is calcu-
lated utilising their corresponding rotated unit vectors. This
is achieved by implicitly creating another vector for each
robot in the pair. This new vector begins at the location of
its associated robot and continues infinitely in the direction
defined by the rotated unit vector. The point at which these
new vectors intersect is the estimated location of the whistle.
Figure 15 illustrates this approach.

The resulting collection of intersection points are then

Figure 15. Vector intersection approach

parsed for any obvious outliers before being averaged to
result in a final location estimate. Theoretically, this would
operate perfectly provided that the initial angles generated
by the localisation stage were perfect. Unfortunately this
was not the case and the inaccuracies present in the angles
were reflected in the intersections. This was alleviated to
a degree by including more robots under the assumption
that their average would mask the errors to an extent. This
method was not selected for use in the demonstration be-
cause of this issue, as the fluctuations were too unpredictable
to control.

8.2.3. HEAT MAP SELECTION

It is clear that the angle generated by the localisation stage
has no guarantee of being entirely accurate. This means
that the rotated unit vector likely does not point at the sound
source, but instead points at another target, hopefully within
its general vicinity. The entire placement field was split into
a grid to take advantage of this with each cell being given a
particular value as per a traditional heat map.

For each rotated unit vector, an implicit whistle vector was
generated that shared the same location as its corresponding
robot. This vector extends infinitely in the same direction
as the unit vector, passing through a multitude of grid cells
in the process. If it passed through a cell directly, then
that cell would be appended a value of 1. All other cells
would be appended a value lower than this by a factor based
on the angle between this whistle vector and another that
passes through the specific secondary cell in question, both
being relative to the robot. If the angle is large, meaning
the vector that directly passes through an outside cell has a

rUNSWift Team Report 2019

direction quite different to that of the whistle vector, then
the appended value will be close to zero.

After each rotated unit vector has been parsed, the remaining
grid will contain values corresponding to the approximate
vicinity of the whistle. Cells with higher values mean that
the whistle location is likely to be close. Figure 16 provides
an example that illustrates this process.

Figure 16. Vector heat map population process

The cell containing the largest value is converted to cartesian
coordinates and selected as the approximate location of the
whistle. Since the entire cell is being reduced to its centre
location, it stands to reason that the smaller the cells are,
and therefore the more of them that exist, the more accurate
the overall algorithm will become. This is obviously a trade-
off with performance since having too many cells will take
the algorithm longer to compute, especially considering the
intended CPU. There are optimisations that can be imple-
mented to alleviate this, but it cannot be entirely eliminated.
In the final version of the algorithm, cells of size 40 by 40
were used to cover the entire area of the soccer field, which
was 7400 by 10400, resulting in 48,100 cells in total.

Unfortunately this performance trade-off meant that deter-
mining if the whistle location was off-field could become
quite demanding if the actual location was not in the imme-
diate outer perimeter. For example, using the figure above,
if the whistle was blown outside of this field, such as four
sequential blocks away, then at least four extra layers would
need to be added to detect it, resulting in an extra 48 cells.
To alleviate this issue, a new grid was created that covered
an area of 29600 by 41600 with cells of size 250 by 250,
resulting in 19,701 cells in total. This larger perimeter grid
was run first, and if the whistle was deemed to be within the

soccer field, then the smaller, more accurate grid was used
afterwards.

This method was selected for use in the demonstration since
its approximation approach was more resistant to errors in
the localisation stage in comparison to intersection averag-
ing.

8.3. Results

Despite the testing performed prior, this system did not work
as intended during the actual demonstration. According to
the log files, the processing worked as intended and a result
was produced, however there was an issue with its transmis-
sion to the central judging computer. We hypothesise that
this is likely the fault of our execution approach since our
system required an ssh connection initially to be activated
instead of being triggered and ran on the robots directly.
Losing the ssh connection when the competition began (as
all personal systems must be closed to avoid illegal interfer-
ence) may have been the trigger. As a result, no score was
achieved.

9. Concluding Discussion
rUNSWift attained 3rd place in the 2019 robocup SPL. We
won 6 of 7 games, losing only to the 2019 champion team,
B-Human. We scored a total of 36 goals, while allowing our
opponents to score only 5 goals against us. This is a signifi-
cant improvement over our already strong performance in
2018. We hope to continue this trend and achieve still better
performance in 2020.

In 2019 we significantly improved our state estimation and
behaviours, while making smaller improvements in many
other areas. In 2020 we hope to continue improving our
vision system. While this system has seen yearly improve-
ment it still lags behind the level of performance achieved
by some other top teams. We aim to automate more of our
calibrations, as these act as a considerable distraction during
the critical competition period. Finally, we hope to improve
on our behaviour system, particularly in the form of passing
and positioning.

Acknowledgements
The 2019 team wish to acknowledge the legacy left by pre-
vious rUNSWift teams and thank the School of Computer
Science and Engineering, University of New South Wales
for their continual financial, administrative and financial
support to our team. We would like to thank the Nao Devils
team for the use of their camera driver, with some modifica-
tions. We also wish to pay tribute to other SPL teams that
inspired our innovations in the spirit of friendly competition.

rUNSWift Team Report 2019

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;

Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan,
V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.;
Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow:
Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

Bai, G.; Brady, S.; Brameld, K.; Chamela, A.; Collette, J.;
Collis-Bird, S.; Hall, B.; Hendriks, K.; Hengst, B.; Jones,
E.; Pagnucco, M.; Sammut, C.; Schmidt, P.; Smith, H.;
Wiley, T.; Wondo, A.; and Wong, V. 2017. runswift
2017 team report and code release. Technical report, The
University of New South Wales.

Bradley, D., and Roth, G. 2007. Adaptive thresholding using
the integral image. Journal of graphics tools 12(2):13–21.

Brameld, K.; Hamersley, F.; Jones, E.; Kaur, T.; Li, L.;
Lu, W.; Pagnucco, M.; Sammut, C.; Sheh, Q.; Schmidt,
P.; Wiley, T.; Wondo, A.; and Yang, K. 2018. runswift
2018 team report and code release. Technical report, The
University of New South Wales.

Hengst, B. 2014. rUNSWift Walk2014
report. : http://cgi.cse.unsw.edu.au/
’tilde’robocup/2014championteampaperreports/20140930-
bernhard.hengst-walk2014report.pdf, University of New
South Wales.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, 1097–1105.

Nielsen, F. 2012. k-mle: A fast algorithm for learning
statistical mixture models. In Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International
Conference on, 869–872. IEEE.

Rosenfeld, A., and Pfaltz, J. L. 1966. Sequential operations
in digital picture processing. Journal of the ACM (JACM)
13(4):471–494.

