
RoboCup SPL 2018 rUNSWift Team Paper

Kenji Brameld, Fraser Hamersley, Ethan Jones, Tripta Kaur, Liangde Li,
Wentao Lu, Maurice Pagnucco, Claude Sammut, Qingbin Sheh, Peter Schmidt,

Timothy Wiley, Addo Wondo, and Kelvin Yang

School of Computer Science and Engineering
UNSW Sydney

Sydney 2052 Australia
http://www.cse.unsw.edu.au

Abstract. RoboCup continues to inspire and motivate our research
in artificial intelligence and robotics. The 2018 UNSW Sydney team
(rUNSWift) consists of undergraduate students, Masters and PhD stu-
dents, alumni, and supervisors. rUNSWift has a rich history, with in-
volvement in RoboCup for over a decade in the Standard Platform
League (SPL). We work in research areas that include computer vision,
localisation, locomotion, machine learning, and layered hybrid architec-
tures. Major developments in 2018 include a robust system to handle
dynamic lighting, significant improvements to the ball detector, a new
field feature detection system, a restructure of the behaviours framework
and the use of the torso to improve walk stability.

1 Introduction

Team rUNSWift, has been competing in the Standard Platform League (SPL)
since 1999. Every year, we strive to improve the weakest aspects of our system
and adapt it to new challenges presented by the committee through rule changes.
In 2018, we focused on improvements to the black and white ball detection, effi-
ciency of field feature detection, adaptability to natural lighting, robot detection
and stability. We also revised our behaviours to incorporate rule changes in-
volving the free kick, and refined the behaviour architecture to allow greater
flexibility in role switching. These changes allowed us to remain competitive in
the league, earning a quarter finalist position in the main competition and first
in the mixed team tournament.

2 Team Organisation and Development Methodologies

Consistent team organisation and procedures have played a significant role over
the past year and has allowed the team to reach the quarter-finals at RoboCup
2018.

The team maintained regular weekly meetings and testing routines that have
been used in past years. We would meet once a week in person, with Google
Hangouts for remote communication. At these meetings we would discuss team

2 Brameld, et. al.

Fig. 1: A subset of the 2018 team.

updates and technical direction for the next week. It also allowed team members
to ask for assistance on difficulties they had experienced, fostering a culture of
collaboration and support for other team members.

Our main form of communication is through Slack, a team-messaging plat-
form, which allows messages to be sent out to specific members through the use
of channels. This encouraged clean, organised team communication, allowing
team members to only listen in to conversations of significance to them. Addi-
tionally our team maintains the code base in a git repository hosted on GitHub
which enables effective collaboration with a large code base. We also utilise the
GitHub wiki for internal documentation and GitHub issues to track ideas, issues
and their completion.

We also maintained regular testing schedules. The simplest of these is a
‘striker test’, where a single robot and the ball are placed in set positions around
the field, and the efficiency in scoring a goal is observed and compared against
previous tests. This tests the integration of all our modules and improvements
over the past week to ensure that changes are actually improving our overall
soccer play. We also ran regular practice drills and matches involves multiple
robots to evaluate team play, positioning, contention and obstacle avoidance.

3 Vision

The basic structure of the 2018 vision system remains the same as that of 2017
[1]. The image is colour classified, (Section 3.1), regions of interest are detected
based on this classification (Section 3.2) and finally regions of interest are classi-
fied into objects by detectors (Sections 3.3, 3.4 and 3.5). This layout is illustrated
in Figure 2.

SPL 2018 Team Paper 3

Fig. 2: Overview of the 2018 vision system.

The key improvements to our vision system were:

– Dynamic Lighting - Previously, we relied on hand colour classification,
which struggled under dynamic lighting conditions. In 2018, we switched to
a binary image, classified with adaptive thresholding (Section 3.1). Addition-
ally, the camera’s auto exposure setting was turned on to allow the robot to
see where lighting varied across the field. Our vision is now robust to a wide
variety of lighting conditions and no longer requires manual calibration.

– New Algorithm to Detect Field Features - The field features detector
was redesigned to work with ROI, cutting the processing time of this detector
(Section 3.3). Although the old system was effective at detecting the field
lines, it was more computationally expensive. Consequently, we struggled
to meet our goal of consistent 30 fps vision - required for the robots to be
reactive in a real game. The new field feature system has largely alleviated
this issue.

– Improved Ball Detection - We continued to improve the ball detection
and re-engineered some of the features that were used. This resulted in an
overall improvement to the detection rate and efficiency of the detector. The
dynamic time management system used for handling complex detection cases
was also refined to reduce the average and worst case time to run 3.4.

4 Brameld, et. al.

– New Robot Detector - Improvements were also made to the robot de-
tector, which was primarily used for obstacle avoidance at close range. Our
changes increased the range and accuracy. This allows our robots to deter-
mine a kickoff play, actively avoid moving directly toward opponents and
attempt to maintain possession of the ball during contention (Section 3.5).

3.1 Adaptive Thresholding

In 2018 we converted the vision system to work with binary images to be more
robust to varied lighting. This is done with adaptive thresholding, which is an
effective method for calculating the threshold dynamically in scenes with un-
even levels of brightness. This is a significant improvement on the static colour
calibrated tables used by the team in previous years.

We utilise an efficient implementation of adaptive thresholding using the in-
tegral image [2] to achieve real-time thresholding on the Nao. The algorithm
determines the average y value (in the YUV422 image) of the pixels within a
square window surrounding each pixel. If the value of the centre pixel is suffi-
ciently lower than the average within the window it is set to black, otherwise it
is set to white. This process can be performed efficiently, regardless of window
size, with the integral image.

Fig. 3: An example of the adaptive thresholding process. White pixels are con-
sidered light whilst green pixels are dark.

As this method does not rely on specialised colour tables the exposure of the
image may be allowed to vary. This has allowed us to enable auto exposure on the
camera, further improving our system’s robustness to changes in lighting. Tar-
get exposure was brought down to minimise motion blur. Furthermore, manual
colour classification of the environment before each game is no longer necessary,
reducing the setup time. The main downside is the loss of colour information,
previously used to determine the field boundary.

SPL 2018 Team Paper 5

3.2 Regions of Interest

Currently, everything of interest on the RoboCup Soccer SPL field is primarily
white. In the 2017 vision system, regions of interest (ROIs) were created by
finding white areas in a colour calibrated image. Minimal changes was required
to move to the binarised image in 2018. These ROIs are located using a connected
component analysis algorithm [8], with some modifications.

Since we just need the bounds of the regions, only the first pass of the algo-
rithm is performed, recording the axis aligned extents of each group of pixels.
When this is done connected groups can be quickly merged by taking the max-
imums of these bounds.

This algorithm tends to produce large groups containing most of the objects
in the frame due to field lines connecting other white objects, such as the ball.
As this is undesirable for the purposes of locating important objects the we split
the scene into a grid, and prevents components from being connected across
grid lines. Unfortunately, this may split useful objects like the ball so the system
merges nearby groups where the edged of the bounding box have a sufficient ratio
of white to not white pixels. This achieves bounding boxes that are reasonably
likely to contain interesting objects, tightly bounded when those objects are not
close to other white objects.

Fig. 4: The region finding system. From left to right: The binary image. Regions
generated without grid splitting. Regions generated with grid splitting, culled
to show only ball like regions. Final regions generated with grid splitting and
merging, culled to show only ball like regions.

3.3 Field Features

The new field feature detector takes advantage of the ability of the ROI system to
locate line segments. All lines of the field are white, such that they are detected
and segmented by the ROI system 3.2. Some computationally efficient checks
are performed on each region, allowing us to determine whether it contains a
field feature. This is more efficient than the previous approach, which scanned
the frame for candidate points and ran RANSAC on these points to locate field

6 Brameld, et. al.

features. The new detector is compatible with the binarisation of vision as it
considers the light pixels as white (for lines) and dark pixels as green (for the
field).

Our system detects regions that appear to contain line segments, corners,
T-intersections and curved line segments. Curved line segments are combined
together to form centre circle candidates, which are further checked for a line
passing through the middle of the candidate circle to provide confirmation and
orientation. If line segments intersect near the detected corner and T-intersection
features these features can be confirmed, or even new, possibly occluded, ones
detected. These lines and more distinct field features are passed to localisation
to determine the position of the robot. This system is outlined in figure 5.

Fig. 5: Overview of the 2018 field feature detector.

3.3.1 Region Expansion There are times when a region does not contain a
sufficient portion of a feature to identify it and accurately distinguish its direc-
tion. In such cases, we attempt to expand the region to obtain more information
on the feature. For corners, this ensures the feature is fully included in the re-
gion. For curves, a larger curvature segment can be detected from the region.
We can’t expand a region arbitrarily, as in some situations, particularly near the
goal box, features are located close to each other and expanding arbitrarily would
put several features in a single region. We perform the expansion by combining
some neighbouring regions, whilst trying to ensure that no other features have
been included into the region. This additional step is effective for increasing the
accuracy and consistency of detecting field features. The following pseudocode
describes how this region expansion is performed:

SPL 2018 Team Paper 7

For every r eg i on
Count number o f white p i x e l segments along the r eg i on

edge
Find a l l ne ighbour ing r e g i o n s
For each ne ighbour ing r eg i on

Create r eg i on conta in ing the o r i g i n a l and
neighbour r eg i on

Count number o f white edge s e c t i o n s in t h i s r eg i on
I f number o f white edge s e c t i o n s in o r i g i n a l

r eg i on
AND combined reg i on i s same

r e p l a c e the o r i g i n a l r eg i on with the combined
reg i on

3.3.2 Line Segments The line classification system primarily examines the
borders of regions. If exactly two white segments are found along the region
boundary, they are assumed to be the ends of a line (Figure 6). We then check
that the width of the two ends are approximately the correct size for a field line
based on an estimated projection from the robot’s pose. We also check that the
two ends are connected by following the edge of the white area. If these checks
pass the system then attempts to determine if the segment is a straight line, a
curve or a corner.

Fig. 6: An example of a region classified as a line. Green areas are dark pixels,
white areas are bright pixels. Blue pixels are dark areas on the border and yellow
pixels are bright areas on the border. The orange pixel is the centre point between
the line ends. Grey pixels are the extents of the line identified by the curve check.

3.3.3 Curve Segments A region must be sufficiently large to be classified
as a curve. Very small regions are always marked as lines. To check if a segment
is a curve, the pixel half way between the two line ends is checked. If that pixel
is green, this is a curve. If the pixel is white, the edges of the line around the
centre point are found. If these are unevenly spaced from the centre point, the
region is marked as a curve. If it is evenly spaced, it is considered a line. This is

8 Brameld, et. al.

shown in Figures 6 and 7. If the segment passes these checks it is finally checked
to see if it is merely curved or is an actual corner.

Fig. 7: Curve detection on a curve. Most colours are as in Figure 6. As the centre
point is not in the line there are no grey pixels. Pink pixels show the edges of
the curve identified.

A region marked as curved must finally be checked to determine if it is
actually a curved line or really a sharp corner. To do this the point along the
edge of the white part of the line segment farthest from the line between the
two ends is found as tips, the middle point of two tips is the intersection of this
potential corner. If half of the edge points of white part is one a straight line,
the region is marked as a corner (Figure 8). Otherwise it is left as a curve.

Fig. 8: Examples of the corner check being performed on a curve (above) and
corner (below). Here the orange pixels represent the “point” of the corner. The
yellow lines represent the straight lines identified as composing the corner. The
pink dots represent the best attempts to find the ends of those lines on the curve.

3.3.4 Centre Circle Construction Where curved line segments have been
identified further checks are made to determine if the area can be confidently
said to contain a centre circle. The possible centre circles corresponding to each
curve segment are calculated. Line segments that lie on the edge of those circles
are then identified. Three checks are made:

SPL 2018 Team Paper 9

1. The total length of curved line segments along the circle edge must be above
a threshold.

2. The total length of curved and straight line segments along the circle edge
must be above a (higher) threshold.

3. There must be a sufficiently long merged line passing through close to the
centre of the centre circle (i.e. the field centre line).

This is illustrated in Figure 9.

Fig. 9: Basic process of constructing a centre circle. Left: The detected lines
overlaid on the true centre circle, with green for curves and red for lines. Middle:
All possible centre circles based on the curved lines. Right: One circle selected,
with all the lines related to it in green.

3.3.5 T Junctions If there are exactly three white segments along the edge
of a ROI, it is potentially a T intersection. As before, the white areas are checked
to determine if they are roughly the correct size and connected to each other. If
they are, the are further checked by ensuring the line between two of the ends
is entirely white pixels (the top of the “T”). Finally the straight lines between
these two ends and the other end (the base of the “T”) must not be entirely
white pixels.

3.3.6 Feature Extrapolation The final step performed by the system is to
check that the corners and T intersections it has identified match the lines it has
found. The system may also extrapolate corner and T intersection locations it
did not find in regions. For every pair of (merged) lines the intersection point is
identified. A quality value is then calculated for that intersection. If a corner or
T intersection is detected nearby a large quality boost is added. The attributes
of the lines forming the intersection are then examined. Longer lines with ends
closer to the intersection add more quality. If one of the lines passes through the
intersection quality is added to it being a T intersection, while corner quality is
penalised (and vice versa). The line based intersection checks are illustrated in
Figure 10.

10 Brameld, et. al.

Fig. 10: An example of the quality modifiers used by the intersection detector.
Lines are shown in red and the intersection point is shown as a blue circle.

3.3.7 Penalty Spot Penalty spot detection is an important feature for the
localisation of a goalkeeper. When standing in the goal box it is surprisingly
difficult for a goalkeeper to see any major field features. The goal box is often
occluded by its own body, particularly the shoulder pads. Furthermore, to re-
spond to the moving ball the goalkeeper must track the ball at all times, so in
general nearby field features will not even be in field of view. The result is that
our standard field features function poorly unless the goalie moves in a manner
detrimental to its role.

The penalty spot is an effective feature to handle this case. The detector is
only concerned with penalty spots that are very close to and in clear view from
the goalkeeper, and is not enabled for other robots. Firstly, simple heuristics
including the width and height of the bounding box and the projected size of
the penalty spot are used to eliminate most regions at a low computational cost.
Secondly, connected component analysis is applied to the region in the adaptive
thresholded image. If any dark region fully encased in white is found the candi-
date is rejected. Finally, the region is passed through a Gaussian mixture model
based classifier to eliminate remaining false positives. The machine-learning al-
gorithm is the GMM used by Ball Detector explained in 3.4, trained to detect
penalty spots instead of balls.

SPL 2018 Team Paper 11

3.4 Ball Detector

Ball detection is a critical component of any robot soccer system. The 2016 tran-
sition to a black and white ball has made the task significantly more difficult.
The ball can no longer be distinguished from other objects by its colour alone,
instead requiring a more complex system that considers a candidate’s appear-
ance. This rendered the 2015 orange ball detector entirely ineffective. The 2017
ball detector adequately met this challenge primarily making use of the circular
shape of the ball and its distinctive pattern. Despite this, the 2017 ball detector
had a number of limitations and assumptions. The structure of the 2017 ball
detector remained in 2018, with improvements made to address its limitations,
increasing the reliability and accuracy.

Inside the ball detector, all regions are passed initially filtered through a ball
candidate finder. The ROI finder at the vision level, described in 3.2 segments
the white sections of the frame, however, these regions are not always a perfect
crop of the ball. Namely, field lines, other robots and goal posts can be included
in an ROI that also includes a ball. A tightly cropped and consistently scaled
region of interest is desirable as it significantly simplifies the problem of ball
pattern detection. Achieving a tight crop is the role of the ball candidate finder.

For “easy” cases cropping is done by Naive ROI (Section 3.4.1.1), while more
complex regions require Blob ROI (Section 3.4.1.2). We also eliminate regions
that are clearly not ball like due to size and shape. Scaling is performed in the
region regeneration step (Section 3.4.2.3).

Next, region specific pre-processing (Section 3.4.2) is performed to adjust
the image and make the major features of the ball candidate more salient. The
white pixels are used to perform a circle fit, and we discard regions for which an
adequate circle cannot be found (Section 3.4.2.2).

A ball candidate that reaches this stage undergoes two final heuristic checks
to analyse the likelihood that it is a ball (Sections 3.4.3.1 and 3.4.3.2). Each
of these checks give the candidate a score if passed. To be considered a ball a
candidate must achieve a score above a certain score threshold.

3.4.1 Ball Candidate Generation

3.4.1.1 Naive ROI If a region is the correct size and shape for a ball, it is
adjusted and considered as a candidate. The definition of correct size is calculated
from the kinematics chain, given the ROI’s position in the frame. The basic
adjustments includes adding a small padding to the region in case the side or
corner of the ball is lost and resizing the ROI to a fixed size. This is the most
frequently occurring case in the game, where the ball is in the middle of the field
with no obstructions.

3.4.1.2 Blob ROI When an ROI is larger than the expected size of a ball, there
is a possibility of the ball being inside the region, but overlapping with other
white objects. In this case, an attempt is made to create a tight region around the
ball, by looking for the black blobs on the ball. A connected component analysis

12 Brameld, et. al.

is run on the binarised region to locate all black blobs within the region. If
multiple ball blobs are detected, they are compared to find the blob with the
highest possibility of being from a ball. This is achieved by comparing the density
of black within the bounding box around the blob. The density is determined
by dividing the number of black pixels in the blob by the product of the width
and height of the rectangular bounding box around the blob. The blob with the
highest density is considerd the most likely to be a blob from the ball in the
region. If the blob’s width to height ratio is close to 1:1, a new ball candidate
region is created around it. This region is then passed through the remainder
of the detection pipeline as though it was a naive ROI. This helps us locate the
ball when it is adjacent or overlapping with other white objects, such as when
the ball is in front of a goal post or robot or on a line.

3.4.2 Preprocessing

3.4.2.1 ROI Specific Thresholding To sharpen the ball pattern, a second pass
of the adaptive thresholding is run, local to the region. This is similar to the
one described in Section 3.1, although the brightness parameter is determined
dynamically for each region, based on its content. Specifically, if the region is in
the top camera, the threshold percentage is one tenth of the average brightness
of that ball candidate. For regions in the bottom camera, a single pre specified
value is used, because there will be less variance in a single frame.

3.4.2.2 Circle Fit The ball candidate is refined further by using a circle fit.
Candidate edge points are generated by scanning from the left, top, and right of
the region to find the first transition from black to white in the binary image. A
scan from the bottom is not conducted, as the shadow of the ball makes often
makes its bottom edge difficult to identify. A circle fitting algorithm is then
used to determine the existence of a circle, along with its centre and radius. The
following describes the algorithm used for circle fitting, for a single region.

Create 2D array , s i z e o f the r eg i on f o r c en t r e po int
vot ing

Create 1D array f o r rad iu s vot ing
Find edge po in t s by scanning r eg i on from top , l e f t ,

and r i g h t o f r eg i on
For 100 i t e r a t i o n s

Randomly s e l e c t three po in t s
Determine cent r e po int and rad iu s from po in t s
Vote on cent r e po int
Vote on rad iu s
IF max(cent r e po int vot ing 2D array) > cent r e po int

vot ing th r e sho ld
AND max(rad iu s vot ing array) > rad iu s vot ing th re sho ld

Found c i r c l e , with most−voted cent r e po int and
most−voted rad iu s

SPL 2018 Team Paper 13

3.4.2.3 Region Regeneration If a region has passed all the preceding checks it is
considered a strong enough candidate to process further. The first step of this is
’zooming in’ on the candidate region. If the region contains too few pixels when
considered at the standard resolution of binary classification the classification is
redone at higher resolution. The resolution is increased by the smallest factor
of 2 that causes the region to contain the minimum number of pixels, or the
maximum resolution of the Nao camera if needed. As a result, we are able to
extend the range of the ball detection considerably, without having to process a
high resolution image upfront in the stages of ROI generation 3.2.

3.4.3 Heuristic Checks

3.4.3.1 Triangle Check The regular shape of the pattern on the ball can be
used to eliminate many non ball cases. To achieve this we check that the dark
spots on the ball form a rough equilateral triangle. To detect these dark spots
adaptive thresholding and connected component analysis is run specifically for
the region. The parameters of these algorithms are, for this case, optimised to
cleanly distinguish the black spots on the ball. Additionally, the circle fit is
treated as a hard edge, preventing spots on the edge of the ball from being
connected via the dark field. The black blobs found this way are checked to
ensure they are of appropriate size and aspect ratio to be a ball spot, relative to
the size of the circle.

The blobs that have passed these tests are then checked to determine if their
centre points form an imperfect equilateral triangle. Each possible triangle is
checked. As the triangle should be (roughly) equilateral this check can be easily
performed by comparing the distances between each centre point. If all three
distances are nearly the same they form a sufficiently equilateral triangle.

3.4.3.2 Gaussian Mixture Model If a ball region passes all the previous checks,
it will be sent to the final classifier. Our ball detection classifier is a specially de-
signed semi-supervised module composed of a Gaussian Mixture Model (GMM)
[7] and a simple classifier.

Two GMMs have defined a set of Gaussian models of both real balls and
samples of non ball images that pass the heuristic checks. These unsupervised,
generative models have data efficiency advantages (that is, they require fewer
examples to learn) over many other machine learning methods, such as convo-
lutional neural networks[6]. When a new candidate is sent to the GMM, it will
output the probability of each Gaussian in the model. Then, a simple Max A
posterio algorithm is applied to determine the most probable classification by
calculating the probability of each mixture and picking the most probable as the
final output.

3.5 Robot Detector

As robots are significantly larger than the other objects on the field the standard
region of interest finder (3.2) does a poor job of finding candidates. To solve this

14 Brameld, et. al.

the region finder is run again at a low resolution with different grid and merging
settings. Clusters of these regions are grouped in order to generate candidate
robot regions, containing all regions forming the cluster.

The second part of the pipeline is the classifier. As with every component of
vision the key factor here is balancing the constraints of accuracy and efficiency.
Decision trees are extremely efficient, however, they struggle with the highly
variable appearance of robots. A machine learning method, random forest, is
used to bag the regions into the correct categories. In addition, careful feature
engineering is essential to achieve good performance. A large variety of features
were tested, and the following features were found to be the most informative:

– Width/height ratio
– White/black pixels ratio
– Size of the bounding box
– Mean of the pixels (binary image)
– Variance of the pixels (binary image)
– Scaled Mass Centre’s X
– Scaled Mass Centre’s Y
– Hu moments [4]
– Zernike moments [5]

The scaled mass centre is calculated by dividing the zero order moments by
the first order moments. Hu and Zernike moments are values that relate to the
shape of the pattern in the image.

Each tree in the random forest is given access to a subset of these features.
This results in a variety of different decision trees, which leverage different as-
pects of the region’s appearance. These trees are then composed together, with
the vote of the “forest” giving a better classification quality than the individual
trees.

4 Localisation

A Multi-Modal Kalman Filter is used for robot pose estimation. Information on
odometry and field features are used for the prediction and measurement update
steps (respectively) in the Kalman Filter.

Odometry is calculated from the movement of the robot’s feet and the gy-
roscope reading, then applied to the predicted pose of the robot. The variance
of the robot is increased in proportion to the magnitude of the pose change
predicted by odometry.

In the measurement update step field features are used. A complication to
this is the existence of visually identical instances of field features at several
different locations (i.e. there are six T-intersections on the field). To handle this,
we assume a sighted field feature is the instance of the feature most consistent
with the current robot pose estimate. A field feature observation is a polar
observation, but must be applied to a Cartesian Kalman Filter. This creates a
non-linear relationship between the observation measurement and Kalman filter
state. Two techniques are used to manage this:

SPL 2018 Team Paper 15

1. Measurement to Pose conversion. For field features that provide distance,
heading, and orientation, specifically corners, T-junctions and centre circles,
a set of possible robot poses are calculated, corresponding to the multiple
corners/ tjunctions/ centre-circles on the field. Measurements with relatively
small discrepancy with the current pose hypothesis are passed through to
the Kalman Filter for a linear update.

2. Extended Kalman Filter. For a penalty spot, that provides only distance and
heading in our system, an EKF is used to linearise the polar measurements
around the current estimate.

To note, the system has moved mostly away from non-linear filters, due to
the removal of polar features such as goal posts and beacons.

In 2014, the 2006 distributed multi-modal Kalman Filter localisation devel-
oped for the AIBOs were ported to the Naos. We track multiple hypothesis
modes for the pose of the robots and ball on the field. Each hypothesis mode
consists of the robot pose, ball position and velocity, and the poses of the team-
mate robots. The robots share information regarding the ball’s state and the
robot’s pose so that teammates can incorporate this information into their own
filters.

To handle the symmetry of the field, the ball is used for disambiguation
between the two symmetric sides of the field, through majority consensus on
which side of the field the ball is on between team mate robots.

5 Motion

rUNSWift’s motion is primarily based off the Hengst’s walk generator [3] devel-
oped in house and used since the 2014 RoboCup competition. Today, it is still
robust choice for many teams and we have continued to improve it through sev-
eral modifications. The kick motion, integrated directly into the walk generator
for smooth transitions, was also developed around the same time, and has also
not varied much from its original design. For the 2018 competition significant
improvements were made to both of these motions to improve the robots stabil-
ity and recovery from disturbances. The motion of the kick was also modified
to improve its dynamic reach, allowing the robot to powerfully strike balls in a
larger area in front of the kicking foot.

In 2017 artificial grass fields were introduced, a surface that made balance
recovery from disturbances more difficult. Additionally, the rough field surfaces
at the 2017 RoboCup Nagoya competition farther complicated stable movement.
These uneven surfaces introduce unexpected disturbances, causing instability.
These factors, combined with an ageing and worn team of robots, influenced the
decision to improve the stability of rUNSWift’s walk generator. When a large
destabilisation of the robot is detected by the gyro the robot will now react by
moving its hip to compensate. As field construction proved similarly challenging
in 2018 this development was tested in practice and proved itself a significant
improvement to walk stability.

16 Brameld, et. al.

6 Behaviours

6.1 New Behaviour Structure

In 2018, we modified our behaviour architecture to improve dynamic role switch-
ing. From 2010, the higher level layers of rUNSWift’s behaviours have been writ-
ten in Python, allowing faster development. Our behaviours are modelled off a
decision tree. Nodes are divided into two categories, roles and skills. Roles, such
as “Goalie” and “Penalty Striker”, define what the robot should be doing during
a game. Skills are specific actions a robot has chosen to take.

Skills range from relatively high level actions, such as approaching the ball
or walking to a global point on the field, to lower level actions, such as stand or
crouch. This allows the low level skills to be inherited as components of several
higher level skills, which in turn are used by one or more roles.

State transitions can happen a frequently when a robot is involved in ball
play. Under the old system, when transitions take place in high level skills, all
child skills must be reinitialised. This process creates a computational overhead
that reduced robot responsiveness, particularly during critical periods of play
around the ball. To mitigate this we redesigned our system so that all objects
are initialised at the start, and a reset routine is called on only the nodes of
interest when a transition takes place.

6.2 Rule Changes

A major new rule in 2018 was the introduction of free kicks. When on the
offending side of a free kick the team needed to ensure they moved beyond 0.75m
from the ball to prevent illegal defender penalties. Robots prioritise walking out
of the 0.75m radius around the ball, whilst remaining as close as can be reliably
achieved to enable faster repossession of the ball after the free kick. Where the
robot has lost sight of the ball, the robot moves to a position close to (but
still more than 0.75m from) the known goal kick ball placement locations. In a
pushing free kick the robot starts a search for the ball if they do not know its
location, moving away when they find it.

2018 also brought about changes to the packet size. We adapted to this
requirement by removing some data duplicated in our message and the SPL
standard message. Another change was the reduction in the packet rate, so the
rate of transmission was reduced accordingly.

6.3 Mixed Team

This year, rUNSWift participated in the Mixed Team Tournament with team
B-Human to form the team B-Swift, where we placed first. This is the second
year we participated in the mixed team tournament.

Mixed team games are played with six robots on each side, with each team
contributing three robots. The B-Swift strategy was to split offence and defence

SPL 2018 Team Paper 17

between the two teams. rUNSWift’s three robots were primarily performed de-
fence defence, whilst offence was handled by the B-Human robots. Our robots
were split into three roles; the goalie and defender used in non mixed team game
play and a specially designed Defensive MidFielder (DMF).

When attacking, the defender will calculate the ball-to-goal vector and posi-
tion itself to intercept while the DMF plays more aggressively, activating imme-
diately when it may be needed. The DMF also has some limited responsibility to
support the attackers. While in this year’s tournament the DMF did not score
directly, the role created some good opportunities for the strikers to shoot goals.

The core strategy for the DMF in defence was to contend with the oppo-
nent’s striker while the defender keeps a constant distance to respond to failed
contention. The defender was also able to offer vision support, such as passing
on the location of the ball when it was kicked behind the DMF.

7 Tooling

While they have no direct effect on gameplay, tools are critical to developing
effective solutions to the problems found in robot soccer. Here the two primary
tools used by rUNSWift are outlined.

7.1 Offnao

Offnao is a tool built in house that collects, saves, restores and streams data
from Nao robots. It can record all the data from the robot’s sensors, including
either the colour classified or raw camera data. If given the raw camera data
Offnao can also run the vision system offline. Offnao also collects information
about the internal state of the robot, such as its beliefs about its position, team
mate position and ball position, along with what the vision system has detected.

All this information can be displayed through various visualisation methods,
including annotated versions of the robot’s camera image and an overhead field
view (Figure 11. Camera settings may also be changed through Offnao. Camera
pose offsets can be calibrated to compensate for differences in the head mounting
and looseness in the robot’s joints. Debug logs recorded by the main code may
be viewed. Finally, raw data from the non vision sensors, such as sonar and foot
sensors, can be accessed.

This tool is also used to calibrate the camera pose and camera settings, by
streaming live data from a robot that is running the code. We can tune these
parameters in real time, before saving them to a config file for the robot to use.

7.2 Vatnao

As part of our 2016-17 Vision System changes we developed a tool to assist in
development and debugging. The tool, Vatnao, runs the vision system on a local
machine using logs recorded on the robot. It allows the developer to examine
variables, annotate images based on how Vision processes the raw frames, and

18 Brameld, et. al.

Fig. 11: The primary Offnao display. The yellow dot is the current ball position
belief. The little pac-man figure is the robot’s position belief. Blue boxes are
detected regions. The black circle is a detected ball.

even adjust configuration in real time. We used it heavily as part of development
of the ball detector to speed up the development cycle, reducing testing time,
quickly identifying problem cases and allowing us to quickly evaluate the effects
of tweaks and changes to our code base.

Vatnao has also allowed us to break down the components of each detector.
For example, in the case of the ball detector, each heuristic can be broken down
and displayed separately to determine optimal values for the checks. The tool
also handles other modules of vision, such as field feature and robot detection.
In 2018, we have continued to develop and use Vatnao to improve vision as we
port more of the vision system to use regions of interest 3.2.

8 Concluding Discussion

rUNSWift placed in the quarter finals this year, winning 3 games out of 5.
Although this is the same standing as 2017, we are proud of the notable im-
provement to gameplay through the number of goals scored. Additionally, we
placed in the quarter finals in the Penalty Shootout Challenge, and first place
in the mixed team tournament with our partners B-Human.

In 2018, our team continued to further improve vision, tweak kinematics and
began restructuring behaviours. During the competition it was apparent our
vision and kinematics work had paid off, however, there is considerable room for
improvements in field features, localisation and behaviours. In several instances,
our robots suffered from getting mislocalised on the field which had detrimental

SPL 2018 Team Paper 19

effects on our gameplay. Our behaviours can be refined to leverage our team’s
strengths of long range vision and flexible motion.

For the upcoming year, we plan to focus on behaviours and localisation. We
also welcome the update to the SPL robot, which brings about new challenges,
opportunities and capabilities. With the updated hardware, we are excited by
the new potential it delivers in moving the league forward.

Acknowledgements

The 2018 team wish to acknowledge the legacy left by previous rUNSWift teams
and thank the School of Computer Science and Engineering, University of New
South Wales for their continual financial, administrative and financial support
to our team. We would like to thank the Nao Devils team for the use of their
camera driver, with some modifications. We also wish to pay tribute to other
SPL teams that inspired our innovations in the spirit of friendly competition.

References

1. Bai, G., Brady, S., Brameld, K., Chamela, A., Collette, J., Collis-Bird, S., Hall, B.,
Hendriks, K., Hengst, B., Jones, E., Pagnucco, M., Sammut, C., Schmidt, P., Smith,
H., Wiley, T., Wondo, A., Wong, V.: runswift 2017 team report and code release.
Tech. rep., The University of New South Wales (2017)

2. Bradley, D., Roth, G.: Adaptive thresholding using the integral image. Journal of
graphics tools 12(2), 13–21 (2007)

3. Hengst, B.: rUNSWift Walk2014 report. : http://cgi.cse.unsw.edu.au/
’tilde’robocup/2014championteampaperreports/20140930-bernhard.hengst-
walk2014report.pdf, University of New South Wales (2014)

4. Hu, M.K.: Visual pattern recognition by moment invariants. IRE transactions on
information theory 8(2), 179–187 (1962)

5. Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE
Transactions on pattern analysis and machine intelligence 12(5), 489–497 (1990)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

7. Nielsen, F.: k-mle: A fast algorithm for learning statistical mixture models. In:
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Con-
ference on. pp. 869–872. IEEE (2012)

8. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Jour-
nal of the ACM (JACM) 13(4), 471–494 (1966)

