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Abstract

Video summarization plays an increasingly important role
in social media content filtering. In this paper, we use self-
attention and graph convolutional neural networks to lever-
age local and global temporal cues. Our model integrates
multi-scale temporal information and mines the relationship
between video frames. We perform extensive experiments on
SumMe and TVSum, and find that our method outperforms
other state-of-the-art methods. Finally, we evaluate our ap-
proach qualitatively by visualizing the generated summaries.

1. Introduction

With the popularity of short video applications, a massive
number of videos are uploaded by users around the world.
YouTube users upload 1,000 hours of video every minute,
making it impossible for anyone to catalog or index the con-
tent manually. Hence it is important to develop automatic
methods for video retrieval and summarization. Video sum-
marization segments the video into meaningful chunks, and
then selects informative frames to summarize those chunks.
This allows users to rapidly browse and navigate through a
large video collection.

Video summarization has wide applications for users and
content maintainers. For example, it allows video database
maintainers to effectively index, browse, and promote their
media assets. For video sharing platforms, such as TikTok,
video summarization can improve the users’ viewing expe-
rience. Content providers such as Netflix and HBO could
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use such a system to automatically extract the preview of the
next episode of a series. Video summarization is crucial for
these potential applications.

Motivation Current video summarization methods [15} 5]
use LSTMs to process the videos and extract temporal fea-
tures from them. However, these systems tend to ignore the
global information in the videos. If segments of the video
were permuted, many of these systems would likely gener-
ate similar results for the segments. Here, we incorporate
multi-scale temporal information, from local segments to a
global perspective in summarizing the video. We use graph
convolutional neural networks to model the relationship be-
tween different temporal scale features with an adaptively
learned graph. The architecture of our proposed model is
illustrated in Figure

The main contributions of our study can be highlighted
as follows:

* We propose atrous temporal pyramid pooling and incor-
porate multi-scale temporal features into the modeling
of global information, capturing information from mul-
tiple scales.

We introduce a residual self-attention scheme which
eases the vanishing gradient problem and leverages
pairwise relations between frames.

‘We combine an encoder-decoder based architecture and
a graph convolutional neural network to model the local
information for video frames.



* We performed extensive experiments on the SumMe
and TVSum datasets and obtain state of the art results.

* Finally, we perform ablation experiments that demon-
strate the effectiveness of the components of our model.

2. Related Work

Many video summarization technologies have been pro-
posed in recent years. Zhang et al. [15] used Long Short-
Term Memory (LSTM) for modeling the video sequence
information and adopt Determinantal Point Process (DPP)
which can help the model to find diverse sets of high-quality
selection for generating a diverse video summary. Mahas-
seni et al. [8]] use adversarial neural networks with LSTMs
for generating the video summary, and the discriminator for
selecting the summary. To complement the quality of gen-
erating the summary through adversarial LSTMs, Yuan et
al. [[14] adopt cycle consistency for external regularization.
Zhao et al. [16] use a hierarchical RNN to model temporal
information, while Ji et al. [5]] add an attention mechanism
on top of the RNN. Zhou et al. [17] introduce reinforcement
learning and design the reward function for selecting the
summary. Finally, Rochan et al. [10]] adopt a fully convolu-
tional neural network instead of using RNN to encode the
temporal cue and predict the summary.

3. Proposed Method

The architecture of our proposed model is illustrated in
the Figure E} The basic idea of our method is that, in the
global branch, we extract the temporal features of the input
video with multiple dilated convolutional layers along the
temporal dimension with different strides (a.k.a., Atrous
Temporal Pyramid Pooling). Then we use the idea of self-
attention proposed in [13] and residual learning introduced
in [4] to learn a global representation from these multi-scale
temporal features. In the local branch, we capture local
temporal information and treat them as single node while
regard the whole video as the graph, which indicates each
clip has some relation with other frames (for example, a
clip is prior of other clip). Therefore, we can use the Graph
Convolution Network (GCN) [7] to the local representation
of the input videos (a.k.a., local branch in the Figure[I). By
incorporating and combining the local and global features,
the model can output the probabilities of each frames to be
selected as the keyframe.

3.1. Global Information Modelling
3.1.1 Atrous Temporal Pyramid Pooling

When we need to extract the features of a frame from its con-
text, it is natural to combine the neighboring frames to build
the time series. Also, the dilated convolution can consider
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the larger receptive field in an image under the same cost.
In another words, the temporal dilated convolution enables
model to capture the video with larger receptive field along
the temporal dimension, leading to multi-scale video rep-
resentation. Therefore, based on the intuition, we propose
Atrous Temporal Pyramid Pooling (ATPP) based on dilated
convolutions to extract video frame context time series fea-
tures with multiple time scales. Suppose w € RP*% is our
dilated convolution kernel, the output of original feature in-
put F' = {f1, f2, f3 ..., fr} through dilation rate r would
be F():
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where ft(r) € R?, and w(") represent the dilated convolu-
tion kernel with dilation rate r. ATPP uses a set of r values
to model multi-scale temporal information and processes the
output of these dilated convolution in parallel. For example,
ATPP includes N parallel dilated convolution with exponen-
tial dilation rates such as r, = 2"~!. Combining the the
output from these NV branches, we get new features F” as a
series of f/:
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where f] is the multi-scale temporal feature for

time step t.

3.1.2 Residual Self-Attention

From the output of ATPP, we can get the multi-scale temporal
features for each frame. To model the global information in
the video, we introduce a residual self-attention mechanism
to capture the relationships between the pairwise frames.

Self-attention is basically calculating a matrix M of size
T x T. For input f; € RN, we use two separate fully
connecting layers to embed the F’ = {f/}1_, into k matrix
K € RWd/)XT and query matrix Q € RIN4/)xT and
M is calculated as:

KTQ

M = softmaxr(—=—
ND/«a

) “)
where M is a matrix including temporal and attention in-
formation of size T x T'. Then we also transform the input
fie RN into a value matrix V' € ]R(Nd/o‘)XT, and the final
result of the residual self-attention is computed as:

F'=VM +F,F" e RN>T, (5)

where « is the hyperparameter that controls the size of the
model, and we empirically set « = 2 for these experiments.
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Figure 1. The overview of our proposed method. Our model uses two independent pathways, one for global information and the other for

local feature extraction.

7 D xT NDxT NDxT
maa-""aaal roenll ¢ Softmax
conv ——
DxT Dilation Rate r=1 —Q PR
conv conv 1xT
[Es-m =-mal P—,v —b[&—kllllllll
Dilation Rater=2 -l 1l conv Sa1obal
Feature Matrix [ 9
Dilation Rate r=4
Atrous Temporal Pyramid Pooling F Residual Self-Attention F'

N=3

Figure 2. The workflow of the global information modeling scheme, with kernels’ size 3.

Then, for every frame in F”' aggregated with attention and
temporal information, we get its corresponding importance
score by inputting it into a fully connected layer:

Sglobal = U(FH * ch)7 (6)

where Wy, is a Nd x 1 matrix of weight parameters of the
network, o(-) is the sigmoid function, and s g;p4; 1S a vector
of importance scores for all frames. The overall procedure
of the global information modeling is illustrated in Figure 2]

3.2. Local Information Modelling

In this subsection, we introduce the graph convolutional
neural network for modeling the relation between adjacent
frames and original frames, illustrated in Figure @ The
model has an encoder-decoder structure.

3.2.1 Encoder

The encoder performs down-sampling to get features in dif-
ferent temporal resolution. Down-sampling is achieved us-
ing 1D convolution with kernel size 3 and stride 2 along
the temporal dimension, capturing the information in three
neighboring frames, and results of this are convolved again

with the same parameters, resulting in information from five
neighboring frames. The output channel size is 1024. The
original video frames after going through GoogLeNet, out-
put the features F' = {f1, fa, ..., fr}, where T is the number
of frames, and f; € R102¢4 Then, we feed them into two
layers of 1D convolutions with weights w; and wy € R3:

FlZF*’LU1:{f{,fé7---,f”}/2} (7)
Fy=Fixwy ={f, f3, s [1)4 ®)

where * means convolution. Therefore, F} contains local in-
formation of 3 nearby video frames and F5 contains informa-
tion of 5 nearby video frames. We then perform convolution
on the features F', F; and F5 as shown below

F=Fxuw 9)
F = F xw) (10)
Fy = Fy * wh (11)

where w’, w] and w} are convolution weights. Then, we
concatenate the features to get F’ and feed them into the
graph convolution network:

F" = f(F',A) = o(AF'W) (12)
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Figure 3. The workflow of the local information modeling scheme.

where W is initialized weights with shape (T" + % + %) X
(T + % + %) . More specifically, we use the original T'
frames, T'/2 embedded features and 7'/4 embedded features
as the nodes in the graph. A is an adjacency matrix trained
based on F which is computed as follows

A = softmaz((F" x w))T (F' «w})), (13)
where w{ and wY are two feature projection matrices for
projecting the F” into two different feature spaces. As a
result, the graph convolution output F”’ contains both local
and global information.

3.2.2 Decoder

The decoder part performs upsampling to the feature matrix
of different time steps. When we were performing the down-
sampling in the encoder part, we obtained a feature matrix
of different time steps F', I} and F5, which increased the
receptive field of local features but decreased the size of the
feature matrix. Then, we perform bilinear interpolation to
recover these matrices to the original size. As a consequence,
we calculate the mean of the three matrices and feed it into a
fully connected layer to get the score of each frame.

In the upsampling part, we first divide the output fea-
ture matrix F”’ from GCN according to the original size of
F; and F5, then we obtain F}’, Fj and FY using bilinear
interpolation. After calculating their average, we obtain

P 1

SOEL + B+ FY),

(14)

where matrix F””’ € RP*T In order to get the local branch
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score for each frame, we transform it through a fully con-
nected layer fc, which is computed as follows
Slocal = U(fC(F/l/))a (15)
where s;ocq1 € RT are the local branch scores for each
sample frame, and o (-) is the sigmoid activation function.

3.3. Global and Local Score Fusion Scheme

In the previous sections, we derive global branch scores
through the residual self-attention mechanism and local
branch scores by the atrous temporal pyramid pooling and
GCN.

Inspired by Ensemble Learning, we can aggregate multi-
ple learners into a classifier with better performance when
learners maintain their accuracy and there is still a certain
degree of individual difference between them.

Based on that intuition, we firstly concatenate two score
matrices into a vector S’ € R7*2, then a fully connected
layer with 2 output units is applied and followed by the
Softmax operation. Then we get the dynamic attention fusion
weights o € RT*2 and compute the final score y; for the
t-th sample frame as:

Yt = at,l(sglobal)t + at,?(slocal)t~ (16)

3.4. Summary Generation

For summary generation, we generate the final summary
of an input video by selecting a set of key shots. Kernel
Temporal Segmentation (KTS) [9] is first applied to generate
a set of change points which indicates the start and end point
of the key shot segments. Then, we constrain the summary



length [ to the proportion of user summary length to the
original video length (usually 15% of the original video
length). After probabilities of all frames in the input video
have been obtained, we select key shots by the 0/1 Knapsack
algorithm which is formulated as:

K
. kglpklk l< L
H})%X ;pksk, s.t sy = ﬁt;klyltw a7
Pk € {0, 1}

where sy, represents the mean score of a specific key shot
within K key shots with length [;, and the key shots with
pr = 1 are selected to generate the final summary.

4. Datasets and Metrics

We use four public benchmark datasets, SumMe [3]], TV-
Sum [[L1]], YouTube [1]], and OVP [1] for training and eval-
uation on SumMe and TVSum. SumMe consists 25 user-
collected videos and corresponding annotations, and TVSum
contains 50 user videos with 20 users’ annotations for each
video in frame-level. YouTube contains 39 videos and OVP
has 50 videos. For fair comparison, we use the GoogleNet
[[12] pretrained on ImageNet [2]] to extract frame-level fea-
tures for video frame representation. These datasets can be
downloaded from their official websites.

For evaluation, we follow the protocol in [[15} 14} 8], the
similarity and quality of the generated summary is evaluated
by measuring the agreement with user generated summary.
We use the F} score to evaluate the video summary and
5-fold cross validation to evaluate the performance of the
model.

5. Experiments
5.1. Evaluation Settings

From each frame of the video, we use GoogleNet to
extract features to obtain the feature vector of length 1024.
We use binary cross-entropy as the loss function and Adam
optimizer for training the model. We train our model for 100
epochs using PyTorch. During the experiment, we use grid
search to tune the training and model hyperparameters.

We evaluate the model in three different settings. In
the Canonical setting, both training and test set come from
the same dataset. In particular, 80% of the dataset is used
for training, and 20% of the dataset is used for testing. In
the Augmented setting, we use 20% of the original dataset
for testing and the training set contains 80% of the orig-
inal dataset along with datasets from TVSum, OVP, and
Youtube. In the Transfer learning setting, the training dataset
only comes from TVSum, OVP, and YouTube and the test
dataset comes from entirely SumMe. The detailed settings
are shown in Table[Tl
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5.2. Quantitative Analysis

Experiment Details of Self-Attention Model The hyper-
parameters of the model include learning rate, dropout, and
the number of convolution layers. The hyperparameter val-
ues searched over are listed in Table 2

Experiment Details of CNN Based Encoder-Decoder
Model The hyperparameters of the model include the
learning rate Ir, the weight_decay to control weight decay of
learning rate, the dropout for fully connected layer, and most
importantly the num_scale to control the number of times of
encoder downsampling, i.e., the range of time scales. Table
[3| presents the range of these hyperparameters. By analyzing
the optimal set of hyperparameters in each data division, we
conclude that a larger num_scale is needed when we have
more datasets, because with large quantities and more cat-
egories of data, larger time scales are necessary to adapt to
these complex datasets.

Comparison with State-of-the-art Models Bi-LSTM
and DPP-LSTM [15]] encode the time domain of the video
with LSTMs. SUM-GAN [§8] and its derivatives use genera-
tive adversarial networks to restructure the video frames with
the generated video caption. DR-DSN [17/] uses reinforce-
ment learning to solve the video caption task. SUM-FCN
[1O] uses a deep fully convolutional neural network to en-
code the video. HSA-RNN [16] uses a hierarchical RNN to
model the information of the video at different scales. CSNet
[6] uses different step sizes and blocks to model the relation-
ship between time domains of the video. The performance
of each model on the SumMe dataset is shown in Table 4]

‘We can see that on the SumMe dataset, our SUM-Fusion
method outperforms the current state-of-art on Canoni-
cal(CSNet) and Augmented(SUM-FCN) settings, by 5% and
4.2% respectively. And for the transfer setting, our model
outperforms the current state-of-art, achieved by CSNet, by
2.9%. On the TVSum, our SUM-Fusion model achieves the
new state-of-art on Canonical setting again, by outperform-
ing CSNet 1.7%. It also has satisfying results on Augmented
and Transfer settings. So generally, we achieves SOTA on
Canonical setting on both datasets, as well as competitive
performance on Augmented and Transfer.

In conclusion, when the distribution of the training set
and test set do not differ, as in the Canonical setting, our fu-
sion model outperforms the previous state of the art. But for
the transfer dataset setting, since the training set and test set
don’t always come from the same dataset, the performance
may not be better than a single model. The main challenge
is improving the fusion mechanism to obtain better gener-
alization, as the fused version does not always outperform
the single models, and is sometimes worse than either alone.
This suggests a conditional (e.g., mixture of experts) fusion



Setting Train Test
Canonical 80% SumMe 20% SumMe
Augmented | 80% SumMe, augmented with data from TVSum, OVP and Youtube | 20% SumMe
Transfer TVSum, OVP and Youtube SumMe

Table 1. The description of different evaluation settings used in our experiments.

Parameter Values
Ir [1e-3,5e-4,1e-4,5¢e-5,1e-5,5¢e-6]
dropout [0.5, 0.6, 0.7]
num_convs [1,2,3,4]

Table 2. The search space of hyperparameters for the global infor-
mation model branch.

Parameter Values
Ir [5e-3,5e-4,1e-4,5¢e-5,1e-5,5¢e-6]
dropout [1e-2,5e-3,1e-3,5¢e-4,1e-4,5¢e-5,1e-5]
weight_decay [0.5,0.7]
num_scale [2,3,4]

Table 3. The search space of hyperparameters for the local informa-
tion branch.

mechanism may improve our results.

5.3. Qualitative Analysis

We visualized the score of the original video from the
standard dataset and the keyframes obtained from our model.

Figure [4] shows the result of our model based on self-
attention captioning two videos. The bar on top of each
figure shows the actual score of each frame, and the dark
blue part is keyframes determined and obtained by our model.
We can see from the figure that to a large extent, our model
makes the right choices for the frames with higher scores.

6. Conclusion

Video summarization is a challenging task, especially
to pick the keyframes from a sequence of long videos. To
capture features in different time scales into global infor-
mation modeling. We used residual self-attention to ease
the vanishing gradient problem in sequence modeling dur-
ing training. To model frames locally in time, we used an
encoder-decoder architecture with a graph neural network.
We performed extensive experiments on the SumMe and
TVSum dataset that demonstrated the effectiveness of our
approach.
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Method Canonical | Augmented | Transfer | Canonical | Augmented | Transfer
(SumMe) (SumMe) (SumMe) | (TVSum) (TVSum) (TVSum)
Bi-LSTM [15] 37.6 41.6 40.7 54.2 57.9 56.9
DPP-LSTM [15] 38.6 429 41.8 54.7 59.6 58.7
SUM-GAN 41.7 43.6 - 56.3 61.2 -
DR-DSN [17] 42.1 439 42.6 58.1 59.8 58.9
SUM-FCN [10] 47.5 51.1 441 56.8 59.2 58.2
HSA-RNN [16] - 441 - - 59.8 -
CSNet [6] 48.6 48.7 44.1 58.5 57.1 574
SUM-Global (ours) 51.1 51.3 47.02 58.2 58.2 58.5
SUM-Local (ours) 51.5 50.3 44.58 59.3 58.9 58.65
SUM-Fusion (ours) 53.59 55.28 43.45 60.24 59.22 58.2

Table 4. Performance comparison on SumMe and TVSum datasets measured by F7-score.
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Figure 4. Visualization of generated summaries for different videos. Light purple bars represent ground-truth scores, and dark purple bars

denote generated summaries.
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